
A Semantic Approach for Designing E-Business
Protocols

Ashok U. Mallya
Department of Computer Science

North Carolina State University
Raleigh, North Carolina 27695–7535

Email: aumallya@ncsu.edu

Munindar P. Singh
Department of Computer Science

North Carolina State University
Raleigh, North Carolina 27695–7535

Email: mpsingh@ncsu.edu

Abstract— Business processes involve interactions among au-
tonomous partners. We propose that these interactions be speci-
fied modularly as protocols. Protocols can be published, enabling
implementors to independently develop components that respect
published protocols and yet serve diverse interests. A variety
of business protocols would be needed to capture subtle business
needs. We propose that the same kinds of conceptual abstractions
be developed for protocols as for information models. Specifically,
we consider (1) refinement: a subprotocol may satisfy the require-
ments of a superprotocol, but support additional properties; and
(2) aggregation: a protocol may combine existing protocols. In
support of the above, this paper develops a semantics of protocols
and an operational characterization of them. This supports judg-
ments about the potential subclass-superclass relations between
protocols, which are a result of protocol refinement. It also
enables protocol aggregation by splicing a protocol into another
protocol.

I. INTRODUCTION

Modern e-business processes span multiple autonomous en-
tities or business partners. Such processes therefore are based
on a rich variety of interactions among software components
that are independently designed and configured and which
represent independent (sometimes mutually competitive) busi-
ness interests. Web services provide a basis for realizing such
processes by enabling businesses to interoperate in a stan-
dardized manner. This has led to interest in technologies such
as coordination and process flows, distributed transactions of
various flavors, and conversations. While these approaches
have some benefits, they mostly take a centralized perspective,
akin to workflow technologies, viewing a process as a series
of tasks to be performed. This proves too tedious for reliable
modeling and too rigid for enactment, which is the reason
workflow technologies have been considered a failure in many
practical settings. The present paper relates to all of these
efforts, but concentrates on the semantical aspects of the
interactions among business partners.

We propose a novel framework for thinking about processes.
Simply put, a process instantiates one or more business
protocols among designated parties. We define a protocol as
a specification of a logically related set of interactions. A
protocol specifies only the key desired aspects of the inter-
active behavior; it leaves the details of a local implementation
entirely up to those who implement the protocol.

Realistic business settings will need an endless variety of
business processes. While some of these processes will be
widely deployed, several will be customized to special appli-
cation domains, industries, and circumstances. While the hard-
coded systems of todays process management require a serious
integration and configuration effort to accomodate change, we
imagine that by employing well-specified, published protocols
to compose processes, the various stake-holders can consid-
erably simplify their integration and configuration efforts [1].
Given a set of protocols, they would only need to acquire
implementations for the roles of those protocols. RosettaNet is
already a step in this direction [2]. It defines over 100 protocols
(callep PIPs in their terminology). RosettaNet’s protocols are
limited to two-party implementations and are mostly two-step
protocols.

We want general protocols to support flexibility, and spe-
cialized protocols to support efficiency, security, or risk man-
agement. For example, we can imagine a generic payment
protocol as well as specializations of it such as payment by
cash, credit card, checks, wire transfer, and so on. Each of
these would differ in the steps that each participant takes.
Moreover, the protocols only specify the interactions, not the
local policies of the participating entities, such as that they
don’t take cash after sunset. Protocols enable such policies to
be inserted but are not directly concerned with the policies.
As long as we recognize that these are payment protocols, our
top-level design goal, namely, to enable some form of payment
would be satisfied.

The most fundamental computer science approach for deal-
ing with complexity is to enable reuse. Two of the most basic
ideas for doing so are to build a specialization-generalization
hierarchy and to aggregate components. The objective of this
paper is develop notions akin to traditional subsumption and
aggregation that are applicable to protocols. We develop two
main classes of abstractions: refinement (like the subclass-
superclass hierarchy) and aggregation (like the part-whole
hierarchy). We develop a formal semantics to support the
hierarchy and propose and algebra to facilitate reasoning about
protocols.

Contribution: Traditional workflow technologies are
quite rigid in that they allow very little variation from the
specified sequence of steps. Hence, composition of new work-

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 



flows, or creating variants of existing ones involve consid-
erable effort. Our contribution is in developing a basis for
easily comparing protocols and an algebra for aggregating
them to create business processes. The algebra provides the
underpinnings of refinement and aggregation abstractions for
protocols. The algebra is a high-level abstraction that relates to
real-world interaction protocols, and hence is easy for protocol
designers to understand. We also demonstrate how the use
of commitments allows reasoning about protocols that leads
to richer interaction patterns from existing ones. Further, we
outline how a hierarchy of protocols can be generated based
on commitments.

II. TECHNICAL MOTIVATION

As a running example, we consider a purchase interaction
in which a customer wants to buy a book from an online
bookstore. The bookstore obtains the customers’ order for a
book if the customer accepts the price quoted by the bookstore
for that book. The book is then shipped to the customer, and
the bookstore is then paid for the book. The actual execution of
the process, however could involve many different scenarios,
two of which we shall describe shortly.

Commitments in E-Business Protocols: To talk about
how e-business protocols can be aggregated or refined, we
must represent not just the behaviors of the participants but
also how the contractual relationships among the participants
evolve over the course of an interaction. Doing so enables
us to determine if the interactions are indeed compliant with
the stated protocols. The contractual relationships of interest
are naturally represented through commitments, which have
recently gained importance in the field of multiagent systems
[3]. Commitments capture the obligations of one party to
another. For example, the customer’s agreement to pay the
price for the book after it is delivered is a commitment that
the customer has towards the bookstore. Commitments lend
coherence to the interactions because they enable agents to
plan based on the actions of others. In principle, violations
of commitments can be detected and, with the right social
relationships, commitments can be enforced. Enforceability of
contracts is necessary when the participants are autonomous
and heterogeneous [4].

Why Formal Semantics?: As explained above, the ob-
jective of this paper is develop notions akin to traditional
subsumption and aggregation that are applicable to protocols.
Doing so presupposes that we have a crisp semantics and can
reason formally about protocols. Accordingly, our task is to
develop a semantics that facilitates flexible actions.

III. TECHNICAL FRAMEWORK

We represent protocols as transition systems similar in spirit
to finite state machines. These protocols generate computations
or runs, which are sequences of states that a valid proto-
col computation (execution) goes through. State changes are
caused by actions that the participants perform. We devise
a hierarchical classification based on the runs generated by
protocols. This classification forms the basis of our work.

reqQuote(c,b,g)

sendQuote(b,c,g,p)

sendAccept(c,b,g,p)

sendMoney(c,b,p)

s0

s1

s2

s3

s4

s5

Bookstore, bCustomer, c

sendGoods(b,c,g)

Purchase

Fig. 1. Purchase example, scenario 1

Commitments: A commitment ���� �� �� denotes that the
agent � is responsible to the agent � for bringing about the
condition �. Here � is called the debtor, � the creditor, and
� the condition of the commitment, expressed in a suitable
formal language. Commitments are created, satisfied, and
transformed in certain ways, using commitment operations.
The conventional commitment operations are described in
more details elsewhere [7].

Example Scenarios: We identify two distinct, but related,
scenarios that can arise during the above book purchase
interaction. Each of these scenarios requires a different amount
of effort from the participants in terms of protocol execution,
planning, and coordination. Both agents would benefit from
being able to compare scenarios to choose the one that best
serves their interests. These scenarios are shown in Figures 1
and 3. Customer refers to the customer’s agent and Book-
store refers to the bookstore’s agent. Ellipses represent states,
labeled ��. Solid arrows are labeled by the messages that
are passed between the participating agents. These messages
correspond to actions that the agents take.

1) Normally, the customer would ask the bookstore for a
price quote on the book it wishes to buy, and upon
receiving a quote from the bookstore, would accept the
bookstore’s offer. The bookstore would then send the
book, after which the customer would send the payment.
This is modeled after the NetBill protocol [8]. Figure 1
shows this interaction.

2) The bookstore might have to contract out the actual
shipping to a shipper. This might happen, for example,
if the customer wants insured shipping, and the book-
store’s existing shipper does not insure goods. Here, the
bookstore interacts with the shipper, and gets the books
delivered to the customer. The shipper is then paid by
the bookstore, but only after the book has been delivered
to the customer. The customer pays the bookstore via its
bank. This scenario is shown in Figure 3 and discussed
in detail in Section V.

Propositions: Propositions capture facts about what con-
ditions hold, what commitments have been made, and whether
these commitments have been fulfilled. The set of propositions
is represented by �

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 



States: A state captures the condition of the world by
assigning truth values to the propositions pertaining to a
protocol. A state is labeled by the set of propositions which
hold at that state. The set of states is denoted by �.

Actions: Agents perform actions to bring about changes
in the world. The communicative actions of the agents corre-
spond to messages sent by the agents to others. An action of
an agent affects the state of a protocol in which it participates.

The set of actions is denoted by �. All participants of a
protocol are assumed to know the meaning of actions used in
that protocol.

Runs: A run is a sequence of states ��� � � � �� � � ��. A run
describes the states that a single execution of a protocol goes
through.

Protocols: A protocol is a tuple, ����� ��������� where
� is a set of actions, � is a set of states, �� is the initial state;
�� � �, � is a set of transitions; � � �� �� �, � is a set
of final states, � � �, and � is a set of roles (or participants)
in the protocol.

� contains transitions of the form ���� �� ���, where ��� �� �
� and � � �. Such a transition advances a run that is in
state �� to state �� based on an action �. Consequently, a run
������� � � � ��� can be generated by a protocol whose initial
state is ��, and whose transition set contains the elements
���� � ���� ���� � ��� and so on till � � � ���, where �� � �.
This set of runs is the minimal set of runs defined by the
protocol, and is denoted by �� �. We denote by ��� ��, the set
of all runs that a protocol � can generate.

IV. REASONING ABOUT PROTOCOLS

This section describes our theory of comparison of protocols
and protocol refinements. It defines the concepts of similarity
of states, and subsumption of runs and protocols.

State-Similarity: A state-similarity function � is a map-
ping from a state to a set of states. For example, if ���� gives
the set of states which have the same commitments being made
towards the same participants, regardless of which participant
makes it, then all such states are similar.

Run Subsumption: A run �� subsumes a run �� under a
state-similarity function � if every state that occurs in �� also
occurs in ��, and in the relative order of all such states are the
same in both runs.

A. Subsumption of protocols

When enacting processes using protocols, a protocol that
generates only short runs is preferable over a protocol that
generates longer runs since short runs speed up the protocol
execution. At the same time, a protocol that allows many
runs is better than one that allows a few runs, since the
many-run protocol affords more choice and flexibility in its
execution to the participants. We now develop some results
about subsumption of protocols and demonstrate them with
examples.

A protocol �� subsumes a protocol �� under the function
� if and only if, for every run �� that �� can generate, ��

can generate a run �� that is subsumed by �� under � .

Customer, c

sendMoney(k,x,p)

authPay(x,p)
s20

s21

Bank, k
Payment

s10
reqQuote(b,x,[gc])

sendQuote(x,b,[gc], px)

sendAccept(b,x,[gc],px)

s11

s12

s13
s13

sendGoods(b,g,x)
s14

Shipper, xBookstore, b

Shipping

s15
sendMoney(b,x,px)

s16

sendGoods(x,c,g)

Fig. 2. A shipping and a payment protocol

V. DESIGNING PROTOCOLS VIA AGGREGATION

Protocols can be developed by aggregating smaller protocols
to implement stages. For example, the Purchase protocol, at
a high level of abstraction, is implemented by a protocol that
has three stages: an initial negotiation stage, followed by a
shipment stage, and finally a payment stage. In the purchase
scenario shown in Figure 1, states ��, ��, ��, and �� belong to
the negotiation stage, states �� and �� belong to the shipment
stage, and states �� and �� belong to the payment stage. For
simplicity, let us adhere to the negotiation-shipment- payment
order even though more flexible protocols might allow the
payment to precede the shipping. This three-stage protocol
can be refined, for example, by substituting, or splicing into
the purchase protocol, any of the shipping protocols available.
One can ship via regular mail or use return-receipt mail. The
splicing works because the purchase protocol is specified as an
interface, and the shipping protocol adheres to the interface.
For example, the shipping protocol in Figure 2 can be spliced
into Purchase as shown in Figure 3. Similarly, the payment
stage, which is also shown in Figure 2 can be substituted for
by the Payment protocol. Further, the simple Purchase protocol
subsumes the resultant protocol.

One important observation to make is that a protocol that
is spliced into another might itself be spliced by the second
protocol. In our example above, the Shipping protocol splices
the Purchase protocol. However, the shipper is paid by the
bookstore only after the customer has paid the bookstore.
Therefore, the Shipment protocol has essentially be spliced
in between its stages ��� and ���.

Enabling Splicing: In realistic settings, e-business pro-
tocols will be refined by splicing to enable the participants’
existing processes to interoperate seamlessly. As a guide, the
following are to be borne in mind when designing a protocol.

� A protocol can be spliced into by another if the con-
tractual relationships between the participants in each
protocol are preserved.

� In most cases a refined protocol differs from the original
only in terms of the creditor or the debtor of commitments
that are made in the protocol. State similarity functions

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 



Refined Purchase

reqQuote(c,b,g)

sendQuote(b,c,g,p)

sendAccept(c,b,g,p)

s0

s1

s2

s3

s4

s5

authPay(x,p)

s21
sendMoney(k,x,p)

reqQuote(b,x,[gc])

sendQuote(x,b,[gc], px)

sendAccept(b,x,[gc],px)

s11

s12

s13
s13

sendGoods(b,g,x)
s14

sendMoney(b,x,px)

s16

sendGoods(x,c,g)

Shipper, xBookstore, bCustomer, cBank, k

Shipping

Payment

Fig. 3. Refinement of purchase by splicing in shipping and payment

therefore need to compare states respecting the commit-
ments made by or to the participants.

� The interface definition of a protocol should specify states
between which another protocol could potentially be
spliced in. For example, the purchase protocol interface
would expose states �� and �� as the states between which
the goods should be delivered.

Commitment-based protocol design helps reason about legal
and illegal splicing easily since commitments have a clear
operational semantics across domains.

VI. DISCUSSION

We introduced a technical approach for modeling protocols
that provides a natural basis for principled methodologies
for designing custom protocols for e-business. The main
contributions lie in the formalization of protocol specialization
and aggregation. This can further be employed to perform
subsumption reasoning and to carry out more interesting
operations on protocols, such as splicing.

A. Literature

Yolum and Singh [6] and Fornara and Colombetti [9]
highlight the benefits of a commitment-based approach to in-
teraction protocol design. Johnson et al. [10] develop a scheme
for identifying when two commitment-based protocols are
equivalent. Their scheme, however, is simplistic, classifying
protocols based solely on their syntactic structure. Our work
provides stronger results from an application point of view and
relates better to the Web Services approach.

The MIT Process Handbook [11] is a project that aims
to create a hierarchy of commonly used business processes.
Based on this hierarchy, Grosof and Poon [12] develop a
system to represent and execute business rules.

The Web Services related standards for process composition
and interoperability [13], such as the Web Services Choreog-
raphy Interface (WSCI) are lower level abstractions than ours
since they specify flows in terms of message sequences.

B. Directions

We introduced a methodology above, but design tools
for applying this methodology would considerably enhance
its power. Further, other methodologies based on the above
semantics may conceivably be invented. Moreover, the above
offers an abstract characterization of protocols. It would help
to relate the semantics to more concrete forms of reasoning.

It would help to develop a taxonomy and rules of thumb
for dealing with the choice of a protocol refinement that a
participant can use to maximize its benefit. A designer may use
such rules of thumb to specify a desired composite protocol
and a participant may use such rules of thumb to seek out
or negotiate for particular refinement based on its needs. A
natural challenge is to develop an taxonomy geared toward
protocols analogous to the taxonomy of business processes
described in the MIT Process Handbook [11].

Acknowledgment: We thank Amit Chopra and Nirmit
Desai for valuable comments. This research was supported
by the NSF under grant DST-0139037 and a contract from
DARPA.

REFERENCES

[1] M. N. Huhns, L. M. Stephens, and N. Ivezic, “Automating supply-chain
management,” in Proceedings of AAMAS-2002. ACM Press, July 2002,
pp. 1017–1024.

[2] “Rosettanet,” www.rosettanet.org.
[3] C. Castelfranchi, “Commitments: From individual intentions to groups

and organizations,” in Proceedings of the AAAI-93 Workshop on AI
and Theories of Groups and Organizations: Conceptual and Empirical
Research, 1993.

[4] M. P. Singh, “Agent communication languages: Rethinking the princi-
ples,” IEEE Computer, vol. 31, no. 12, pp. 40–47, Dec. 1998.

[5] M. Verdicchio and M. Colombetti, “Commitments for agent-based supply
chain management,” ACM SIGecom Exchanges, vol. 3, no. 1, pp. 13–23,
2002.

[6] P. Yolum and M. P. Singh, “Flexible protocol specification and execution:
Applying event calculus planning using commitments,” in Proceedings of
AAMAS-2002. ACM Press, July 2002, pp. 527–534.

[7] M. P. Singh, “An ontology for commitments in multiagent systems:
Toward a unification of normative concepts,” AI and Law, vol. 7, pp.
97–113, 1999.

[8] M. A. Sirbu, “Credits and debits on the Internet,” IEEE Spectrum, vol. 34,
no. 2, pp. 23–29, Feb. 1997.

[9] N. Fornara and M. Colombetti, “Defining interaction protocols using a
commitment-based agent communication language,” in Proceedings of
AAMAS-2003. ACM Press, July 2003, pp. 520–527.

[10] M. W. Johnson, P. McBurney, and S. Parsons, “When are two protocols
the same?” in Communication in Multiagent Systems: Agent Communica-
tion Languages and Conversation Policies, ser. LNAI, M.-P. Huget, Ed.
Berlin: Springer-Verlag, 2003, vol. 2650, pp. 253–268.

[11] T. W. Malone, K. Crowston, and G. A. Herman, Eds., Organizing
Business Knowledge: The MIT Process Handbook. Cambridge, MA:
MIT Press, 2003.

[12] B. N. Grosof and T. C. Poon, “SweetDeal: Representing agent contracts
with exceptions using XML rules, ontologies, and process descriptions,”
in Proceedings of WWW-2003, 2003.

[13] C. Peltz, “Web service orchestration and choreography,” IEEE Com-
puter, vol. 36, no. 10, pp. 46–52, Oct. 2003.

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 


	footer1: 


